Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.07.12.23292582

ABSTRACT

Multiple COVID-19 vaccines were proven to be safe and effective in curbing severe illness, but despite vaccine availability, uptake rates were relatively low in the United States (U.S.), primarily due to vaccine hesitancy. To better understand factors associated with COVID-19 vaccine hesitancy in the U.S., our study provides a comprehensive, data-driven population-level statistical analysis at the county level. We find that political affiliation, as determined by the proportion of votes received by the Republican candidate in the 2020 presidential election, has the strongest association with COVID-19 vaccine hesitancy. The next strongest association was median household income, which has a negative association. The percentage of Black people and the average number of vehicles per household are also positively associated with vaccine hesitancy. In contrast, COVID-19 infection rate, percentage of Hispanic people, postsecondary education percentage, median age, and prior non-COVID-19 childhood vaccination coverage are other factors negatively associated with vaccine hesitancy. Unlike previous studies, we do not find significant relationships between cable TV news viewership or Twitter misinformation variables with COVID-19 vaccine hesitancy. These results shed light on some factors that may impact vaccination choice in the U.S. and can be used to target specific populations for educational outreach and vaccine campaign strategies in efforts to reduce vaccine hesitancy.


Subject(s)
COVID-19 , Hallucinations
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.23.22279132

ABSTRACT

Since the US reported its first COVID-19 case on January 21, 2020, the science community has been applying various techniques to forecast incident cases and deaths. To date, providing an accurate and robust forecast at a high spatial resolution has proved challenging, even in the short term. Here we present a novel multi-stage deep learning model to forecast the number of COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1 to 4 weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, and demographic. We further present results from a case study that incorporates SARS-CoV-2 genomic data (i.e. variant cases) to demonstrate the value of incorporating variant cases data into model forecast tools. We implement a rigorous and robust evaluation of our model – specifically we report on weekly performance over a one-year period based on multiple error metrics, and explicitly assess how our model performance varies over space, chronological time, and different outbreak phases. The proposed model is shown to consistently outperform the CDC ensemble model for all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 weeks ahead) forecast horizon. Our case study also highlights the potential value of virus genomic data for use in short-term forecasting to identify forthcoming surges driven by new variants. Based on our findings, the proposed forecasting framework improves upon the available forecasting tools currently used to support public health decision making with respect to COVID-19 risk. Research in context Evidence before this study A systematic review of the COVID-19 forecasting and the EPIFORGE 2020 guidelines reveal the lack of consistency, reproducibility, comparability, and quality in the current COVID-19 forecasting literature. To provide an updated survey of the literature, we carried out our literature search on Google Scholar, PubMed, and medRxi , using the terms “Covid-19,” “SARS-CoV-2,” “coronavirus,” “short-term,” “forecasting,” and “genomic surveillance.” Although the literature includes a significant number of papers, it remains lacking with respect to rigorous model evaluation, interpretability and translation. Furthermore, while SARS-CoV-2 genomic surveillance is emerging as a vital necessity to fight COVID-19 (i.e. wastewater sampling and airport screening), to our knowledge, no published forecasting model has illustrated the value of virus genomic data for informing future outbreaks. Added value of this study We propose a multi-stage deep learning model to forecast COVID-19 cases and deaths with a horizon window of four weeks. The data driven model relies on a comprehensive set of input features, including epidemiological, mobility, behavioral survey, climate, and demographic. We present a robust evaluation framework to systematically assess the model performance over a one-year time span, and using multiple error metrics. This rigorous evaluation framework reveals how the predictive accuracy varies over chronological time, space, and outbreak phase. Further, a comparative analysis against the CDC ensemble, the best performing model in the COVID-19 ForecastHub, shows the model to consistently outperform the CDC ensemble for all evaluation metrics in multiple spatiotemporal settings, especially for the longer forecasting windows. We also conduct a feature analysis, and show that the role of explanatory features changes over time. Specifically, we note a changing role of climate variables on model performance in the latter half of the study period. Lastly, we present a case study that reveals how incorporating SARS-CoV-2 genomic surveillance data may improve forecasting accuracy compared to a model without variant cases data. Implications of all the available evidence Results: from the robust evaluation analysis highlight extreme model performance variability over time and space, and suggest that forecasting models should be accompanied with specifications on the conditions under which they perform best (and worst), in order to maximize their value and utility in aiding public health decision making. The feature analysis reveals the complex and changing role of factors contributing to COVID-19 transmission over time, and suggests a possible seasonality effect of climate on COVID-19 spread, but only after August 2021. Finally, the case study highlights the added value of using genomic surveillance data in short-term epidemiological forecasting models, especially during the early stage of new variant introductions.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.05.21256712

ABSTRACT

An impressive number of COVID-19 data catalogs exist. None, however, are optimized for data science applications, e.g ., inconsistent naming and data conventions, uneven quality control, and lack of alignment between disease data and potential predictors pose barriers to robust modeling and analysis. To address this gap, we generated a unified dataset that integrates and implements quality checks of the data from numerous leading sources of COVID-19 epidemiological and environmental data. We use a globally consistent hierarchy of administrative units to facilitate analysis within and across countries. The dataset applies this unified hierarchy to align COVID-19 case data with a number of other data types relevant to understanding and predicting COVID-19 risk, including hydrometeorological data, air quality, information on COVID-19 control policies, and key demographic characteristics.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.07.20092353

ABSTRACT

COVID-19 is present in every state and over 90 percent of all counties in the United States. Decentralized government efforts to reduce spread, combined with the complex dynamics of human mobility and the variable intensity of local outbreaks makes assessing the effect of large-scale social distancing on COVID-19 transmission in the U.S.a challenge. We generate a novel metric to represent social distancing behavior derived from mobile phone data and examine its relationship with COVID-19 case reports at the county level. Our analysis reveals that social distancing is strongly correlated with decreased COVID-19 case growth rates for the 25 most affected counties in the United States, with a lag period consistent with the incubation time of SARS-CoV-2. We also demonstrate evidence that social distancing was already under way in many U.S. counties before state or local-level policies were implemented. This study strongly supports social distancing as an effective way to mitigate COVID-19 transmission in the United States.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL